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Abstract. We study the kinematics of deep inelastic scattering corresponding to the rotationally
symmetric distribution of quark momenta in the nucleon rest frame. It is shown that the rotational
symmetry together with Lorentz invariance can impose constraints on the quark intrinsic momenta.
Obtained constraints are discussed and compared with the available experimental data.
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The motion of quarks inside the nucleons plays an important role in some effects
which are at present intensively investigated both experimentally and theoretically. Ac-
tual goal of this effort is to obtain a more consistent 3-D picture of the quark-gluon struc-
ture of nucleons. For example the quark transversal momentum creates the asymmetries
in particle production in polarized (SIDIS) or in unpolarized (Cahn effect) experiments
on deep inelastic scattering (DIS). Relevant tool for the study of these effects is the set
of the transverse momentum dependent distributions (TMDs). Apparently, a better un-
derstanding of the quark intrinsic motion is also a necessary condition to clarify the role
of quark orbital angular momenta in generating nucleon spin.

We have paid attention to these topics in our recent studies, see [1, 2, 3, 4, 5]
and citations therein. In particular we have shown that the requirements of Lorentz
invariance (LI) and the nucleon rotational symmetry in its rest frame (RS), if applied
in the framework of the 3-D covariant quark – parton model (QPM), generate a set
of relations between parton distribution functions. Recently we obtained within this
approach relations between usual parton distribution functions and the TMDs. The
Wanzura-Wilczek approximate relation (WW) and some other known relations between
the g1 and g2 structure functions were similarly obtained in the same model before [7].
Let us remark that the WW relation has been obtained independently also in another
approaches [11, 10] in which the LI represents a basic input.

The aim of the present report is to consistently apply the assumption LI&RS to the
kinematics of DIS and to obtain the constraints on related kinematical variables. That is
a complementary task to the study of above mentioned relations between distribution
functions, which depend on these variables. So, the report can be considered as an
addendum to our former papers related to the covariant QPM [1, 2, 3, 4, 5, 6, 7, 8, 9].
However, general validity of obtained results may exceed the parton model framework.
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FIGURE 1. Diagram describing DIS as a one photon exchange between the charged lepton and quark.
Lepton and quark momenta are denoted by k, p (k′, p′) in initial (final) state, P is initial nucleon momen-
tum.

The Bjorken variable and light-cone coordinates
First, let us shortly remind the properties of the Bjorken variable

xB =
Q2

2Pq
, (1)

which plays a crucial role in phenomenology of lepton – nucleon scattering. Regardless
of mechanism of the process, this invariant parameter satisfies

0≤ xB ≤ 1, (2)

for complete proof of this general relation see [12]. Now let us consider QPM, where the
process of lepton – nucleon scattering is initiated by the lepton interaction with a quark
(see Fig. 1), which obeys

p′ = p+q, p′2 = p2 +2pq−Q2; Q2 =−q2. (3)

The second equality implies

Q2 = 2pq−δm2; δm2 = p′2− p2, (4)

which with the use of relation (1) gives

pq
Pq

= xB

(
1+

δm2

Q2

)
. (5)

The basic input for the construction of QPM is the assumption

Q2 � δm2, (6)

which allows us to identify

xB =
Q2

2Pq
=

pq
Pq

(7)

and to directly relate the quark momentum to the parameters of scattered lepton. More-
over, if one assumes

Q2 � 4M2x2
B, (8)



where M is the nucleon mass, then one can identify

xB ' x≡ p0− p1

P0−P1
(9)

in any reference frame in which direction of the first axis is defined by the vector q (see
[12]). The last relation expressed in the nucleon rest frame reads

x =
p0− p1

M
, (10)

which after inserting into (2) gives

0≤ p0− p1

M
≤ 1. (11)

However the most important reason why we require large Q2 is in physics. If we
accept scenario when a probing photon interact with a quark, we need sufficiently large
momentum transfer Q2 at which the quarks can be considered as effectively free due to
asymptotic freedom. At small Q2 the picture of quarks (with their momenta and other
quantum numbers) inside the nucleon disappear.

Rotational symmetry
The RS means that the probability distribution of the quark momenta p = (p1, p2, p3) in
the nucleon rest frame depends, apart from Q2, on |p|. It follows that also−p is allowed,
so together with the inequality (11) we have

0≤ p0 + p1

M
≤ 1. (12)

The combinations of (11),(12) imply

0≤ |p1| ≤ p0 ≤M, |p1| ≤
M
2

. (13)

And if we again refer to RS, then further inequalities are obtained:

0≤ |p| ≤ p0 ≤M, |p| ≤ M
2

, 0≤ pT ≤ p0 ≤M, pT ≤
M
2

, (14)

where
|p|=

√
p2

1 + p2
2 + p2

3, pT =
√

p2
2 + p2

3.

Apparently, the above inequalities are valid also for average values 〈p0〉 ,〈p1〉 ,〈|p|〉 and
〈pT 〉. In addition, if one assumes that pT− distribution is a decreasing function, then
necessarily

〈pT 〉 ≤
M
4

. (15)

The above relations are valid for sufficiently high Q2 suggested by Eqs. (6) and (8).
Let us note that the on-mass-shell assumption has not been applied for obtaining these



relations. On the other hand the additional on-mass-shell condition m2 = p2 = p2
0−p2

allows us to obtain [9] the more strict relations like

x≥ m2

M2 , p0 ≤
M2 +m2

2M
, |p| ≤ M2−m2

2M
, (16)

or

p2
T ≤M2

(
x− m2

M2

)
(1− x) . (17)

Of course, it is clear that in general the on-mass-shell assumption is not realistic.
Now let us make a few comments on the relations obtained in the previous part:
i) The ratio x of light-cone variables (9) has a simple interpretation in the frame, where

the proton momentum is large - x is the fraction of this momentum carried by the quark.
On the other hand interpretation of the same variable in the nucleon rest frame is more
complicated. In this frame the quark transversal momentum cannot be neglected and x
depends on the both, longitudinal and transversal quark momenta components. In the
limit of massless quarks the connection between the variable x in (10) and the quark
momenta components is given by the relations:

x =
p0− p1

M
; p0 =

√
p2

1 + p2
T , p1 =−Mx

2

(
1− p2

T
M2x2

)
, p0 =

Mx
2

(
1+

p2
T

M2x2

)
.

(18)
The sense and usefulness of these variables have been demonstrated in our recent
papers on TMDs [1, 2]. So, the value of invariant variable x does not depend on the
reference frame, but its interpretation e.g. in the rest frame differs from that in the infinite
momentum frame.

ii) The relations (14), (15), which follow from RS, can be confronted with the experi-
mental data on 〈pT 〉 or 〈p〉. We have discussed the available data in [1, 2] and apparently
our relations would prefer the set of lower values 〈pT 〉 corresponding to the ’leptonic
data’. On the other hand the second set giving substantially greater 〈pT 〉 and denoted
as the ’hadronic data’, seems to contradict these relations. If we believe this data, then
the contradiction means that some assumption, from which the relations follow, is false.
Here, probably the most critical can be inequality (6). But let us notice, failure of condi-
tion (6) would also imply that the Bjorken variable cannot be replaced by the light-cone
ratio, Eq. (7). And then correspondingly the light-cone formalism would be called into
question. In this way, the large intrinsic quark momenta (pT > M/2) are incompatible
with the light-cone formalism combined with the RS. No such problem arises provided
the data satisfy relations (14), (15). Apparently a further study is needed to clarify these
questions.

iii) The LI&RS are basic inputs for our covariant QPM. In [2] we have suggested
that the RS, if applied on the level of QPM, follows from the covariant description. The
point is as follows. The construction of covariant parton models starts from probability
distribution of the quark momenta. Covariant formulation requires that dependence on
the quark momentum p can be only via an invariant term depending on p. In fact the
parton models allow only one such term: pP. This input is applied not only in our QPM,
but also in another approaches, see e.g. [10, 11, 13]. The invariant term pP expressed in
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FIGURE 2. Upper limit of the quark transversal momentum as a function of x for µ = 0 (solid line),
0.1 (dashed line), 0.2 (dotted line) and 0.3 (dash-dotted line).

the nucleon rest frame equals p0M, which is equivalent to the RS. Another theoretical
reasons for RS have been discussed in [8]. In our QPM we usually assume m → 0, or
more exactly 0 < m� p0 ≤M. Apart from the relations (17) we have shown in [9] that
related distribution function has a maximum at x = m/M. Since existing data [14] cover
region x & 0.00006 where no maximum is observed, it follows that the model does not
contradict the data provided m/M . 0.00006. That is why we assume m → 0 in our
QPM. At the same time we realize the notion of the quark mass is more complicated and
exceeds the framework of QPM. For massless quarks the relation (17) implies〈

p2
T (x)

〉
≤M2x(1− x) . (19)

One can check that the predictions given in [10, 11] on
〈

p2
T (x)

〉
satisfy this inequality,

which also means that 〈pT 〉 → 0 for x→ 0 or x→ 1.
iv) The relation (17) is obtained for the quarks on-mass-shell. In a more general case,

where only inequalities (14) hold, this relation is replaced by

p2
T ≤M2

(
x− µ2

M2

)
(1− x) ; µ

2 ≡ p2
0−p2, (20)

where the term µ2 is not a fixed parameter corresponding to the mass, but only a number
varying in the limits defined by (14). The last relation implies for any µ2:

p2
T ≤M2x(1− x) , (21)

which is equivalent to the on-mass-shell relation (17) for m = 0. This general upper limit
for p2

T depending on x is demonstrated in Fig. 2.
The above comments concern general relations (7) and (13)–(15), which in the region

of sufficiently high Q2 follow from the assumption LI&RS. Only the comment iii) is
connected with the relations valid within specific model.

To conclude, in the present report we studied the kinematic constraints due to the
rotational symmetry of the quark momenta distribution inside the nucleon. In particular,
we have shown that the light-cone formalism combined with the assumption on the
rotational symmetry in the nucleon rest frame allows only pT ≤ M/2. Only part of
existing experimental data on 〈pT 〉 satisfies this bounds, but the another part does not. In



general, the reconstruction of 〈pT 〉 from the DIS data is a model-dependent procedure.
These are reasons why a more study is needed to clarify this issue.
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